Biochar Helps Combat Nematodes And Increases Yields

Carbongoldtom

A biochar-based soil improver, enriched with species of mycorrhizal fungi, actinomyces bacteria and trace elements is helping to combat the root-knot nematode – significantly increasing yields for organic tomato growers in Portugal.
Biochar is a highly porous, high carbon form of charcoal used to improve soil nutrition, growing conditions and soil structure. It is made from any waste woody biomass that has been charred at a low temperature with a restricted supply of oxygen, a process called pyrolysis. This process results in a stable form of carbon that is removed from the atmospheric carbon cycle when added as a soil amendment.

“Where we have incorporated Carbon Gold Soil Improver in the very sandy soil at our Portuguese nursery we have seen a 7% yield increase and a lower level of nematode infestation than areas that were not treated.” – Paul Howlett, Head of Agronomy at Vitacress Tomatoes

Vitacress Tomatoes (formerly Wight Salads) trialled Soil Association and SKAL approved enriched biochar from UK biochar company, Carbon Gold, from June 2013 to April 2014 in order to improve the sandy soils at their Portuguese nursery. They applied 2kg per square meter to a 5 hectare trial plot taken to a depth of 30cm, analysing the outcomes against a 5 hectare control area with the same crop.

The increase in crop yield was significant. By week 24 they realised a 7% higher yield, (an additional 0.9kg per m2) compared to the 5ha control plot. This equated to an additional 2,600kg Piccolo Cherry on the Vine tomatoes.

In the Vitacress trial plots it became evident that the colonies of mycorrhizal fungi, using biochar as a refuge in the soil, were able strike out at parasitic Meloidogyne nematodes, enticing and devouring the microscopic pests and protecting the plant roots from attack.
Continue reading “Biochar Helps Combat Nematodes And Increases Yields”

Mycorrhizal Fungi Helps Protect Plants Against Root-knot Nematodes Infection

AMF
Arbuscular mycorrhizal fungi affect both penetration and further life stage development of root-knot nematodes in tomato

The root-knot nematode Meloidogyne incognita poses a worldwide threat to agriculture, with an increasing demand for alternative control options since most common nematicides are being withdrawn due to environmental concerns. The biocontrol potential of arbuscular mycorrhizal fungi (AMF) against plant-parasitic nematodes has been demonstrated, but the modes of action remain to be unraveled. In this study, M. incognita penetration of second-stage juveniles at 4, 8 and 12 days after inoculation was compared in tomato roots (Solanum lycopersicum cv. Marmande) pre-colonized or not by the AMF Glomus mosseae. Further life stage development of the juveniles was also observed in both control and mycorrhizal roots at 12 days, 3 weeks and 4 weeks after inoculation by means of acid fuchsin staining. Penetration was significantly lower in mycorrhizal roots, with a reduction up to 32%. Significantly lower numbers of third- and fourth-stage juveniles and females accumulated in mycorrhizal roots, at a slower rate than in control roots. The results show for the first time that G. mosseae continuously suppresses root-knot nematodes throughout their entire early infection phase of root penetration and subsequent life stage development.

STUDY LINK: http://www.ncbi.nlm.nih.gov/pubmed/22147206
Continue reading “Mycorrhizal Fungi Helps Protect Plants Against Root-knot Nematodes Infection”